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a b s t r a c t

Problems of thermoelasticity for an anisotropic-in-plan inhomogeneous thin toroidal shell are solved by
asymptotic integration of the equations of the three-dimensional problem of the theory of an anisotropic
inhomogeneous solid for various boundary conditions. Recurrence formulae are derived for the compo-
nents of the asymmetric stress tensor and the displacement vector. An example is given.
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Many publications1 have been devoted to determining the stress–strain state of toroidal shells using classical shell theory. In this paper,
we solve mixed boundary-value problems for a thin toroidal shell, taking into account the features of the geometry of a torus2 (the sign
variability of the Gaussian curvature). The method of asymptotic integration3–5 of the equations of the three-dimensional problem of the
theory of the thermoelasticity of an inhomogeneous anisotropic solid is used.

Consider a toroidal shell, the middle surface of which is obtained by rotating the generatrix of a circle of radius r around the OZ axis,
lying in the plane of the circle at a distance R from its center. Suppose that, in a toroidal system of coordinates, it occupies the region

In the figure we show a toroidal shell and its cross section, where the � axis is directed along the outward normal to the middle surface
of the shell, � is the angle between the � and OZ axes, and � is the angle of rotation of the circle generatrix. The regions 0 < � < � and
−� < � < 0 of the surface have positive and negative Gaussian curvature respectively.

The material of the shell is anisotropic and inhomogeneous in plan along the longitudinal �, � coordinates.
We will consider two cases:

1) on the outer surface � = h and the inner surface � = −h of the shell we are given the displacements

(1)

2) on the outer surface we are given the displacements

(2)

and a load

(3)

is applied to the inner surface (Fig. 1).

The surface of the shell is assumed to be continuous and closed, and hence no other conditions are imposed. A thermal field acts on the
shell. The effect of this field is taken into account using the Duhamel-Neumann model, and it is assumed that the temperature function �
(�, �, �) is known and satisfies the heat-conduction equation and the corresponding boundary conditions.

� Prikl. Mat. Mekh. Vol. 74, No. 3, pp. 433–440, 2010.
E-mail address: gevorgyanrs@mail.ru (R.S. Gevorgyan).

0021-8928/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2010.07.006

dx.doi.org/10.1016/j.jappmathmech.2010.07.006
http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
mailto:gevorgyanrs@mail.ru
dx.doi.org/10.1016/j.jappmathmech.2010.07.006


M.G. Asratyan, R.S. Gevorgyan / Journal of Applied Mathematics and Mechanics 74 (2010) 306–312 307

Fig. 1.

It is required to find the stress-strain state of the shell.
We will write the equations of equilibrium of an anisotropic body in curvilinear coordinates taking into account the bulk forces and the

elasticity relation together with the temperature stresses

(4)

Here H1, H2 and H3 are Lamé coefficients, A and B are the coefficients of the first quadratic form of the coordinate surface, R1 and R2 are
the principal radii of curvature of the coordinate surface, aij are the elastic pliability coefficients, �ij (i, j = 1, 2, 3) are the linear thermal
expansion coefficients and P�, P�, P� are the components of the bulk force.

For the toroidal shell considered, � = � and � = �, and also

(5)

We will replace the components of the symmetrical stress tensor ��� = ��� (�, �, �) by the components of the asymmetrical tensor
	�� /= 	�� using the formulae2,3

(6)

and we will change to dimensionless coordinates and dimensionless strains using the formulae

(7)
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after which the equations and relations (4) for the torus take the form

(8)

The system of equations and relations (8) are singularly perturbed by the geometrical small parameter 
. Consequently,2–7 the solution
is made up of two solutions: an internal solution, predominant inside the region occupied by the thin body, and the solution of the problem
for the boundary layer, which decreases exponentially in the direction of the inward normal to the end surfaces.6,7 The surface of the
toroidal shell is continuous and closed, and hence here we will only construct the internal solution, which we will seek in the form of the
asymptotic expansion4

(9)

where Q is any of the stresses and dimensionless strains.
The bulk forces and the temperature function can simultaneously be represented in the form

(10)

It follows from relations (10) that the order of the stress-strain state, due to the volume forces and the temperature field, will be of the
order of the stress-strain state produced by the strains and forces applied to the faces, if the intensity of the bulk forces is a factor of 
−2

greater than the order of the dimensionless boundary strains, while the intensity of the change in the temperature field is a factor of 
−1

greater than the order of the dimensionless boundary strains. Otherwise, the contribution of the first will be less and the corresponding
terms will occur in the equations for higher approximations.

Substituting expressions (9) and (10) into relations (8) and equating coefficients of like powers of 
 on both sides of each equation,
we obtain a non-contradictory system of equations in the unknown coefficients Q(s) of expansion (9). Solving this system, we obtain the
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following recurrence formulae for determining Q(s), i.e., the components of the stress tensor and the strain vector are as follows:

(11)

Here

(12)
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We will denote the following operators by L1, L2 and L:

(13)

The common integral (11) contains 6S integration functions

(14)

which are uniquely defined from the conditions specified on the shell surfaces.
Satisfying the kinematic boundary conditions (1), we obtain the values of the integration functions in the form

(15)

which will have the following form for the mixed boundary conditions (2) and (3)

(16)

We will give some examples of the stress-strain state of an orthotropic toroidal shell for two iteration steps.

Example 1. A normal pressure acts on the inner surface of an orthotropic shell, while the outer surface is rigidly clamped. We have

(17)

After the first iteration step we obtain

(18)

After the second step

(19)
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Table 1

� h/r = 0.1 h/r = 0.01

R/r = 2 3/2 2 3/2

�A 0.968 0.962 0.997 0.996
�B 1.111 1.250 1.010 1.020
�C 1.034 1.042 1.003 1.004
�D 0.909 0.833 0.990 0.980

Hence, after two iteration steps the components of the asymnmetrical stress tensor and the displacement vector will be

(20)

Example 2. A hydrostatic pressure acts on the inner surface of the shell, while the outer surface is rigidly clamped. In this case the
components of the stress tensor and the displacement vector are given by formulae (18)–(20), where we must take

(21)

Example 3. The inner surface of the shell is heated uniformly to a temperature � (�, �, �) and rigidly clamped, while the outer surface is
load-free. We have

(22)

After the first iteration step the components of the stress tensor and the displacement vector will be

(23)

If the outer surface of the shell is rigidly clamped, while the inner surface is load-free, the components of the stress and displacement
fields will be given by formulae (23), where −h must be replaced by h.

Hence, theoretical recurrence formulae (9)–(13) enable us to calculate the components of the displacement vector and the stress tensor
of a toroidal shell with any asymptotic accuracy specified in advance, when the conditions of the first or second boundary-value problems
of the theory of thermoelasticity are specified on its surface. If combinations of the mixed boundary conditions, consisting of conditions (1),
(2) and (3), are specified on its outer and inner surfaces, the components of the stress and displacement fields will be given by recurrence
formulae (15) or (16), depending on whether the components of the displacement vector or the stress tensor are specified (Table 1).

Note than when R → ∞, the toroidal shell converts into a cylindrical shell of infinite length, for which all the problems formulated and
their solutions remain true in the limit as R → ∞.

An analysis of the stress-strain state of the toroidal shell shows that, in the region where the Gaussian curvature of the surface is
negative (−� < � < 0), the values of the stresses ���, ���, ���, ��� are somewhat greater, while in the region of positive Gaussian curvature
(0 < � < �) they are less than their values at the corresponding points of a cylindrical shell. This can be seen from the table, where we show
values of the ratios � of the moduli of these stresses at corresponding points for a toroidal shell and for a cylindrical shell of radius r.

Recurrence formulae (9)–(16) are readily available algorithms for a computer program, which enables analytic and numerical solutions
of the above boundary-value problems to be obtained fairly rapidly with any asymptotic accuracy O(
S).
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